2 resultados para VIRULENCE FACTORS

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including b-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP–mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lactoferrin (Lf) is present in milk and gland secretions and serve as an antimicrobial function. Insufficient amounts of Lf in some secretions also appear to correlate with certain health problems. Protection against gastroenteritis is the most likely biologically relevant activity of lactoferrin. Multiple in vitro and animal studies have shown a protective effect of lactoferrin on infections with enteric microorganisms, including rotavirus, Giardia, Shigella, Salmonella and the diarrheagenic Escherichia coli. Lactoferrin has two major effects on enteric pathogens: it inhibits growth and it impairs function of surface expressed virulence factors thereby decreasing their ability to adhere or to invade mammalian cells. Lf also inhibits several species of fungi and certain parasites. This review covers the role of Lf in clearing the parasitic infections. The mechanism by which lactoferrin inhibits some parasites may be via stimulation of the process of phagocytosis, whereby immune cells engulf and digest foreign organisms. Trichomonas vaginalis is a protozoan responsible for the number one, non-viral sexually transmitted disease. In this review, we also discussed the role of Lf in cervical infections.